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Abstract—The improper use of C has resulted in 

many security problems in the Linux kernel, most of 

which are related to memory. Strong security is crucial 

for the Linux kernel because of its wide use. Various 

techniques have been proposed to improve C; however, 

each technique has overhead and complexity. It is 

possible to achieve better performance, safety, and 

reduced complexity by using a memory-safe language. 

In late 2022, Rust was added as a second language to 

the Linux kernel. I assess the properties of two kernel 

modules implementing the same algorithm, one written 

in C and the other in Rust. In addition, I also assess 

whether the Rust code requires any restrictions for 

interoperability with C and whether Rust’s safety 

features are advantageous or disadvantageous. The 

comparison of the C and Rust modules demonstrates 

that the performance of the Rust module is very close to 

that of the C, along with the advantageous safety 

features, and does not require any restrictions for 

interoperability with the C owing to safe abstractions. 

 
 

Keywords—Linux kernel, kernel module, Rust, C, 

PRESENT-80.  

 

I. INTRODUCTION 

C is one of the most popular programming languages 

used to develop system-level software. There are many 

reasons for its popularity, but the most prominent are that it 

is simple, flexible, portable, and very fast. However, owing 

to its simplicity and flexibility, it is also prone to developer 

mistakes [14], which may be fatal for system-level 

software and result in security vulnerabilities. 

 

Throughout history, the Linux kernel has suffered from 

security problems owing to the improper use of C, most of 

which are memory related [1][2], such as use-after-free and 

memory overflow. Strong security is even more crucial for 

the Linux kernel, because it is commonly used in many 

applications. There have been various proposals to add new 

system-level programming languages to the kernel in the 

past to improve the overall security; however, none of 

them have been successful for various reasons, including 

performance inefficiency and language complexity. 

 

In early 2021, a proposal with an emphasis on improved 

overall security along with other modern language features 

that Rust provides was made by Miguel Ojeda [3] under 

the “Rust for Linux” project name to add the Rust 

programming language as a second language to the kernel. 

This proposal also included bindings, safe abstractions, and 

example modules written in Rust. Subsequently, a real 

NVMe driver was written in Rust to compare its 

performance against C and evaluate the Rust language 

[4][5]. 

 

In late 2022, official support for the Rust programming 

language was added to the Linux kernel [13]. The added 

Rust support is minimal, as not all of the safe abstractions 

in the initial proposal are made into the kernel. However, it 

is still possible to create custom bindings and safe 

abstractions. 

 

This study aims to assess the following using two 

custom loadable kernel modules implementing the same 

algorithm, one written in C and the other in Rust: 

1. Rust safety features and whether they are 

advantageous or disadvantageous when writing a 

kernel module. 

2.  Properties of the same module written in Rust and 

C in terms of performance and footprint. 

3. The interoperability of Rust and C code to 

determine whether Rust’s language features may 

be freely used without requiring any restrictions. 

II. EXISTING TECHNIQUES TO IMPROVE C 

It is possible to improve C, instead of adding a new 

language to the kernel. In fact, the following techniques 

have been proposed in the past, and some have found their 

way into the kernel: 

• Address Space Layout Randomization (ASLR) 

• Control Flow Integrity (CFI) 

• Static Analysis Tools 

• eBPF 

• Code Isolation 

 

However, each technique has an associated overhead 

that may reduce the overall efficiency of the kernel. In 

addition, most of these techniques utilize runtime checks to 

prevent security problems, resulting in increased 

complexity. With the use of a memory-safe language, such 

as Rust, it is possible to mitigate these problems [15], even 

before runtime, owing to their strict type system and lack 

of undefined behaviors, thereby reducing the overall 

performance overhead and complexity without 

compromising performance. 
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III. DESIGN OF THE KERNEL MODULE 

As technology improves rapidly, each device becomes 

more computationally capable. This advancement has led 

to the emergence of new applications of these devices. One 

of the most popular applications is the Internet of Things 

(IoT), in which devices create a large, interconnected 

network to communicate and exchange data. Security is 

arguably more crucial in these systems because one 

compromised device may affect the entire network. 

Therefore, I decided to implement the PRESENT-80 

encryption algorithm. This algorithm is not implemented in 

the kernel and is heavily dependent on bit manipulation, 

which allows the use of Rust specific safe features to 

perform these operations, whereas it has undefined results 

in standard C. It should be noted that to evaluate Rust in 

the Linux kernel, it is necessary to write a custom 

algorithm that is independent of kernel features itself. 

Otherwise, we will only call the safe Rust abstractions that 

are basically wrappers around the C functions. 

 

PRESENT-80 is a simple and lightweight block cipher 

designed for use in resource-constrained devices [6], such 

as IoT devices. It uses an 80-bit key and operates on a 64-

bit block, also known as state. The encryption process 

consists of four steps, with each step but the first step 

repeated in each round: 

1. Round Key Generation: 

This step is executed only once, prior to the 

beginning of the encryption. The given 80-bit 

key is expanded to thirty-two 64-bit keys to be 

used in each encryption round. 

2. Round Key Addition: 

The state is updated with the XOR operation 

using the 64-bit round key. 

3. Substitution Layer: 

Each 4-bit in the state is updated with a different 

4-bit specified in the PRESENT-80 substitution 

box. 

4. Permutation Layer: 

Each bit in the state moved into a different bit 

position specified in the PRESENT-80 

permutation box. 

 

The main approach in both loadable kernel modules is to 

keep the algorithm implementations largely the same, with 

the only differences being the use of language-provided 

features to perform the same operations. 

 

To receive and send data from and to the user space, I 

decided to create two misc. character devices, named 

present80_key and present80_encrypt, respectively. In 

Linux, character devices are special files in which file 

operation calls such as read and write are redirected to the 

file owner [11], which is the kernel module in this case. 

The creation of misc. character devices relies on kernel 

features; therefore, I need to use safe Rust abstractions to 

call the related C functions. The user may now set the 

encryption key by writing ten bytes to the present80_key 

device, initiate the encryption of the block by writing eight 

bytes to the present80_encrypt device, and then obtain 

the encryption result by reading the same device. 

Whenever these write or read operations are performed by 

the user, the actions are handled by callback functions 

defined in the code. 

 

Although it is possible to use integer types (uint32_t, 

uint64_t, etc.) in both languages for encryption 

calculations to simplify the overall code (and possibly 

increase the overall speed), I decided to use byte arrays and 

perform bitwise operations on each byte itself instead of 

integer types, with the expectation of using more language 

features of Rust. For example, bits of the 80-bit key stored 

in two separate integer types may be rotated in the 

following way using C: 
uint64_t t; 
uint64_t kl; 
uint64_t kh; 
 
... 
 
//The key register is rotated by 61 bit 
positions to the left 
t = kh & 0xFFFF; 
kh = (kl >> 3) & 0xFFFF; 
kl = (kl << 61) | (t << 45) | (kl >> 19); 

Fig. 1. PRESENT-80 round key generation step, key 

rotation using integer type [16]. 

 

However, in the byte array approach, the bytes that make 

the integer are rotated one at a time as follows using 

Rust:
fn bytes_rotate_right(bytes: &mut [u8], 
bit_count: usize) { 
    let size = bytes.len(); 
     
    ... 
     
    let fpb = bytes[0]; 
    let mut pb; 
    let mut npb = 0; 
 
    for ib in 0..size { 
        let inb = if ib == size - 1 { 0 } else 
{ ib + 1 }; 
 
        if ib == 0 { 
            pb = bytes[ib]; 
            npb = bytes[inb]; 
        } else if ib == size - 1 { 
            pb = npb; 
            npb = fpb; 
        } else { 
            pb = npb; 
            npb = bytes[inb]; 
        } 
 
        bytes[inb] = ((pb & 
preserve_mask).checked_shl((8 - shift_count) as 
u32)).unwrap_or(0) 
            | (npb.checked_shr(shift_count as 
u32).unwrap_or(0)); 
    } 
     
    ... 
} 

Fig. 2. PRESENT-80 round key generation step, key 

rotation using bytes of an integer. 

 

IV. COMPARISON OF THE C AND RUST KERNEL MODULES 

All results below were obtained using the following 

hardware and operating system: 

• CPU:  

Intel® Alder Lake Core™ i7-12700H 14C/20T, 

24MB L3, E-CORE Max 3.50GHZ P-CORE Max 

4.7GHZ, 45W, 10nm SuperFin 

• RAM:  

8GB DDR4 3200MHz 
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• OS:  

Linux 6.3.0-microsoft-standard-WSL2+ #4 SMP 

Sat May 25 17:35:42 BST 2024 x86_64 

GNU/Linux (custom-built Rust-enabled kernel 

using the WSL2 default configuration, which may 

be found in [10]) 

 

The encryption tests below were performed using the 

same key and data pair on both modules, which consists of 

randomly generated 1000 keys and 1000 blocks of data, 

resulting in a total of 1,000,000 encryptions. 

 

In addition, because the added Rust support is minimal 

and does not have support for device creation, I use the 

initial safe abstractions of the “Rust for Linux” project, 

which may be found in [9]. 

 

A. Module Size 

When a C or Rust code is compiled, the compiler 

generates an object file that contains metadata and data 

regarding the overall code. The information inside this 

object file is structured in a specific format, such as the 

Executable and Linkable Format (ELF) for UNIX-like 

systems or Portable Executable (PE) for Windows, based 

on the compiler and target platform, and is separated into 

various sections [7][8]. The total size of a module is the 

aggregated size of each individual section of the object file, 

along with additional metadata. The sizes of both modules 

are shown in Fig. 3. 

 
Fig. 3. Size of the C and Rust modules in kilobytes (KB). 

 

B. Section Size 

In accordance with the previous section, the size of the 

specific sections of both modules is shown in Fig. 4. 

 

Fig. 4. Size of the .text, .data, and .bss sections of the 

C and Rust modules in bytes. The sizes of these sections 

also include the related relocation section size. 

C. Number of Symbols 

The total number of symbols in both modules is shown 

in Fig. 5. These numbers include debug symbols; however, 

they do not include absolute sections if their symbol names 

represent a file. 

 
Fig. 5. Total number of symbols in the C and Rust 

modules. 

 

D. Average Encryption Time of a Block 

The average time required to encrypt a block in both 

modules is shown in Fig. 6. To reduce variance, five 

different benchmarks were performed. 

 
Fig. 6. Average time required for the C and Rust modules 

to encrypt a block. The results are in µs. 

 

E. Total Encryption Time of 1000 Blocks with 1000 

Different Keys 

The total time required to complete 1,000,000 

encryptions in both modules is shown in Fig. 7. To reduce 

variance, five different benchmarks were performed. 

 
Fig. 7. Total time it takes for the C and Rust modules to 

perform 1,000,000 encryptions. The results are in seconds. 
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F. Build Time 

The total time required to build both modules is shown 

in Fig. 8. 

 
Fig. 8. Total time it takes for the C and Rust modules to be 

built. The results are in seconds. 

 

V. ANALYSIS OF THE BOTH MODULES’ PROPERTIES 

A. Module Size 

Based on Fig. 3, it is clear that the Rust module is 

significantly larger (+139.64%). To determine what causes 

the Rust module to be larger, we need to look at the sizes 

of the other sections that are not shown in Fig. 4. 

 

B. Section Size 

Based on Fig. 4, we already know that the Rust module 

has two sections that are larger than the C module. 

However, even if these two larger sections of the Rust 

module are added together, there is still a large gap in the 

total module size. This means that some of the omitted 

sections are significantly larger. 

 

When kernel modules are built, they include symbols 

solely for debugging purposes. If we look at Fig. 9, we 

may see that the size of the debug symbols in the Rust 

module is significantly larger (+142.28%) than that in the 

C module and makes up the majority of the Rust module. 

 
Fig. 9. Total size of debug symbols in the C and Rust 

modules. The sizes are in bytes. The sizes of these sections 

also include the related relocation section size. 

 

Table 1 lists the percentages of the total size occupied 

by each section of the module. 

Module Section Size % 

C .text 2.14% 

C .data 0.61% 

C .bss 0.059% 

C .debug 92.42% 

C Other ~4.77% 

Rust .text 1.44% 

Rust .data 0.20% 

Rust .bss 0.001% 

Rust .debug 97.27% 

Rust Other ~1.09% 

Table 1. Table of which section occupies how much space 

in the module. 

 

 According to Table 1, the majority of the size is 

contributed by debug symbols in both modules. As Miguel 

Ojeda mentioned in [3], the most probable reason for the 

Rust module being significantly larger than the C module 

is that the unused parts of Rust’s standard library are 

imported into the module, along with their debug symbols.  

 

In addition, if we look at the undefined symbols in the C 

module, we may see two symbols, misc_register and 

misc_deregister, which are functions defined in 

“drivers/char/misc.c” and exported as symbols in the 

kernel. As they are exported as symbols, this allows other 

C modules to import them dynamically. However, Rust 

modules require safe abstractions, and we may see that the 

safe abstraction for misc_register and misc_deregister 

is included in the Rust module, which is called 

<kernel::miscdev::Registration<...>::new_pinned, 

in contrast to the C module, where it is dynamically 

included. We may understand that another reason for the 

Rust module being large is the necessity to include these 

abstractions in the module itself. 

 

C. Performance 

Based on Fig. 6, the Rust module is ~0.16µs slower than 

the C module when encrypting a block. Based on Fig. 7, 

the Rust module is ~0.17s slower than the C module when 

both modules complete a total of 1,000,000 encryptions. 

 

D. Safety 

Throughout the development of the Rust code, Rust’s 

compiler caught many potential problems owing to short-

lived references during compile-time checks and prompted 

me to fix them. In C, because memory management is left 

to the developer, it could result in access to a dangling 

reference, which is an undefined behavior. In addition, the 

compiler constantly warned me about other types of 

potential problems, such as the use of potentially 

uninitialized variables and moved values, which might 

result in a double-free problem if it were C code.  

 

Because the implementation of the algorithm relies on 

heavy bit manipulation, there are cases where the bits are 

shifted by more than the width of the type (e.g., 8-bit 

integer). In the C standard, the result of this operation is 

undefined [12]. This requires an additional code to prevent 

this undefined behavior from occurring. However, in Rust, 

owing to the standard language functions, this operation 

may safely be handled with a variety of functions, such as 

checked_shl, overflowing_shl, and wrapping_shl. 

 

During the testing of the code, there were cases where 

kernel crashed due to improper copy operations, that is, 

trying to copy more bytes than the size of the target buffer. 

In C, this may have resulted in a memory-overflow 

problem in the worst case or crash the kernel in the best 

case. However, in Rust, this copy operation is checked, 

which results in crashes in every case and prevents 

memory-overflow attacks. There has been another instance 

of kernel crash due to access to out-of-bounds of an array, 
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which is prevented by Rust by generating panic, thus 

crashing the kernel. In C, access to out-of-bounds is an 

undefined behavior [12]. 

 

Overall, development in Rust was safer because of the 

compile time checks, language’s safe (checked) functions, 

and use of the special type Result, as all error cases must 

have been handled. It is likely that the potential problems 

detected by the Rust compiler will not be the case in a 

small C project like this module; however, as the project 

grows, the chances for these problems to occur also 

increase. 

 

E. Build Time 

Rust is often criticized for its slow build times. This is 

because Rust projects often depend on modules that may 

also depend on other modules. Because the project and 

dependency modules are built from source, it may take a 

long time to build, depending on the size of the project. 

However, the kernel’s safe Rust abstractions only depend 

on Rust’s standard modules core and alloc, and not any 

other modules. Based on Fig. 8, the build time of the Rust 

module is very close to that of the C module because the 

Rust module does not depend on modules other than those 

mentioned above and on safe Rust abstractions. 

 

VI. CONCLUSIONS 

Even though the Rust module is significantly bigger 

when compared to the C module, this may be fixed in the 

future with a similar approach taken in the C modules by 

making the safe abstractions dynamically includable.  

 

Rust safety features were advantageous, many possible 

problems were detected in compile time checks even 

before running the module. 

 

The test results showed that the Rust code has a 

performance very close to that of the C code.  

 

The written Rust code did not require any restrictions for 

interoperability with the C code, owing to the safe 

abstractions provided by the kernel. 
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