
This paper was prepared as part of my MEng project.

Rust in the Linux Kernel

Contents
I. Introduction ... 1
II. Existing Techniques To Improve C .. 1
III. Design of the Kernel Module ... 2
IV. Comparison of the C and Rust Kernel Modules ... 2

A. Module Size .. 3
B. Section Size .. 3
C. Number of Symbols .. 3
D. Average Encryption Time of a Block ... 3
E. Total Encryption Time of 1000 Blocks with 1000 Different Keys ... 3
F. Build Time .. 4

V. Analysis of the Both Modules’ Properties .. 4
A. Module Size .. 4
B. Section Size .. 4
C. Performance .. 4
D. Safety .. 4
E. Build Time .. 5

VI. Conclusions .. 5
References ... 5

August 2024 1

Abstract—The improper use of C has resulted in

many security problems in the Linux kernel, most of

which are related to memory. Strong security is crucial

for the Linux kernel because of its wide use. Various

techniques have been proposed to improve C; however,

each technique has overhead and complexity. It is

possible to achieve better performance, safety, and

reduced complexity by using a memory-safe language.

In late 2022, Rust was added as a second language to

the Linux kernel. I assess the properties of two kernel

modules implementing the same algorithm, one written

in C and the other in Rust. In addition, I also assess

whether the Rust code requires any restrictions for

interoperability with C and whether Rust’s safety

features are advantageous or disadvantageous. The

comparison of the C and Rust modules demonstrates

that the performance of the Rust module is very close to

that of the C, along with the advantageous safety

features, and does not require any restrictions for

interoperability with the C owing to safe abstractions.

Keywords—Linux kernel, kernel module, Rust, C,

PRESENT-80.

I. INTRODUCTION

C is one of the most popular programming languages

used to develop system-level software. There are many

reasons for its popularity, but the most prominent are that it

is simple, flexible, portable, and very fast. However, owing

to its simplicity and flexibility, it is also prone to developer

mistakes [14], which may be fatal for system-level

software and result in security vulnerabilities.

Throughout history, the Linux kernel has suffered from

security problems owing to the improper use of C, most of

which are memory related [1][2], such as use-after-free and

memory overflow. Strong security is even more crucial for

the Linux kernel, because it is commonly used in many

applications. There have been various proposals to add new

system-level programming languages to the kernel in the

past to improve the overall security; however, none of

them have been successful for various reasons, including

performance inefficiency and language complexity.

In early 2021, a proposal with an emphasis on improved

overall security along with other modern language features

that Rust provides was made by Miguel Ojeda [3] under

the “Rust for Linux” project name to add the Rust

programming language as a second language to the kernel.

This proposal also included bindings, safe abstractions, and

example modules written in Rust. Subsequently, a real

NVMe driver was written in Rust to compare its

performance against C and evaluate the Rust language

[4][5].

In late 2022, official support for the Rust programming

language was added to the Linux kernel [13]. The added

Rust support is minimal, as not all of the safe abstractions

in the initial proposal are made into the kernel. However, it

is still possible to create custom bindings and safe

abstractions.

This study aims to assess the following using two

custom loadable kernel modules implementing the same

algorithm, one written in C and the other in Rust:

1. Rust safety features and whether they are

advantageous or disadvantageous when writing a

kernel module.

2. Properties of the same module written in Rust and

C in terms of performance and footprint.

3. The interoperability of Rust and C code to

determine whether Rust’s language features may

be freely used without requiring any restrictions.

II. EXISTING TECHNIQUES TO IMPROVE C

It is possible to improve C, instead of adding a new

language to the kernel. In fact, the following techniques

have been proposed in the past, and some have found their

way into the kernel:

• Address Space Layout Randomization (ASLR)

• Control Flow Integrity (CFI)

• Static Analysis Tools

• eBPF

• Code Isolation

However, each technique has an associated overhead

that may reduce the overall efficiency of the kernel. In

addition, most of these techniques utilize runtime checks to

prevent security problems, resulting in increased

complexity. With the use of a memory-safe language, such

as Rust, it is possible to mitigate these problems [15], even

before runtime, owing to their strict type system and lack

of undefined behaviors, thereby reducing the overall

performance overhead and complexity without

compromising performance.

MEng in Electronic & Computer Engineering

Ege Bilecen

ege.bilecen2@mail.dcu.ie

Dublin City University

Dublin, Ireland

August 2024 2

III. DESIGN OF THE KERNEL MODULE

As technology improves rapidly, each device becomes

more computationally capable. This advancement has led

to the emergence of new applications of these devices. One

of the most popular applications is the Internet of Things

(IoT), in which devices create a large, interconnected

network to communicate and exchange data. Security is

arguably more crucial in these systems because one

compromised device may affect the entire network.

Therefore, I decided to implement the PRESENT-80

encryption algorithm. This algorithm is not implemented in

the kernel and is heavily dependent on bit manipulation,

which allows the use of Rust specific safe features to

perform these operations, whereas it has undefined results

in standard C. It should be noted that to evaluate Rust in

the Linux kernel, it is necessary to write a custom

algorithm that is independent of kernel features itself.

Otherwise, we will only call the safe Rust abstractions that

are basically wrappers around the C functions.

PRESENT-80 is a simple and lightweight block cipher

designed for use in resource-constrained devices [6], such

as IoT devices. It uses an 80-bit key and operates on a 64-

bit block, also known as state. The encryption process

consists of four steps, with each step but the first step

repeated in each round:

1. Round Key Generation:

This step is executed only once, prior to the

beginning of the encryption. The given 80-bit

key is expanded to thirty-two 64-bit keys to be

used in each encryption round.

2. Round Key Addition:

The state is updated with the XOR operation

using the 64-bit round key.

3. Substitution Layer:

Each 4-bit in the state is updated with a different

4-bit specified in the PRESENT-80 substitution

box.

4. Permutation Layer:

Each bit in the state moved into a different bit

position specified in the PRESENT-80

permutation box.

The main approach in both loadable kernel modules is to

keep the algorithm implementations largely the same, with

the only differences being the use of language-provided

features to perform the same operations.

To receive and send data from and to the user space, I

decided to create two misc. character devices, named

present80_key and present80_encrypt, respectively. In

Linux, character devices are special files in which file

operation calls such as read and write are redirected to the

file owner [11], which is the kernel module in this case.

The creation of misc. character devices relies on kernel

features; therefore, I need to use safe Rust abstractions to

call the related C functions. The user may now set the

encryption key by writing ten bytes to the present80_key

device, initiate the encryption of the block by writing eight

bytes to the present80_encrypt device, and then obtain

the encryption result by reading the same device.

Whenever these write or read operations are performed by

the user, the actions are handled by callback functions

defined in the code.

Although it is possible to use integer types (uint32_t,

uint64_t, etc.) in both languages for encryption

calculations to simplify the overall code (and possibly

increase the overall speed), I decided to use byte arrays and

perform bitwise operations on each byte itself instead of

integer types, with the expectation of using more language

features of Rust. For example, bits of the 80-bit key stored

in two separate integer types may be rotated in the

following way using C:
uint64_t t;
uint64_t kl;
uint64_t kh;

...

//The key register is rotated by 61 bit
positions to the left
t = kh & 0xFFFF;
kh = (kl >> 3) & 0xFFFF;
kl = (kl << 61) | (t << 45) | (kl >> 19);

Fig. 1. PRESENT-80 round key generation step, key

rotation using integer type [16].

However, in the byte array approach, the bytes that make

the integer are rotated one at a time as follows using

Rust:
fn bytes_rotate_right(bytes: &mut [u8],
bit_count: usize) {
 let size = bytes.len();

 ...

 let fpb = bytes[0];
 let mut pb;
 let mut npb = 0;

 for ib in 0..size {
 let inb = if ib == size - 1 { 0 } else
{ ib + 1 };

 if ib == 0 {
 pb = bytes[ib];
 npb = bytes[inb];
 } else if ib == size - 1 {
 pb = npb;
 npb = fpb;
 } else {
 pb = npb;
 npb = bytes[inb];
 }

 bytes[inb] = ((pb &
preserve_mask).checked_shl((8 - shift_count) as
u32)).unwrap_or(0)
 | (npb.checked_shr(shift_count as
u32).unwrap_or(0));
 }

 ...
}

Fig. 2. PRESENT-80 round key generation step, key

rotation using bytes of an integer.

IV. COMPARISON OF THE C AND RUST KERNEL MODULES

All results below were obtained using the following

hardware and operating system:

• CPU:

Intel® Alder Lake Core™ i7-12700H 14C/20T,

24MB L3, E-CORE Max 3.50GHZ P-CORE Max

4.7GHZ, 45W, 10nm SuperFin

• RAM:

8GB DDR4 3200MHz

August 2024 3

• OS:

Linux 6.3.0-microsoft-standard-WSL2+ #4 SMP

Sat May 25 17:35:42 BST 2024 x86_64

GNU/Linux (custom-built Rust-enabled kernel

using the WSL2 default configuration, which may

be found in [10])

The encryption tests below were performed using the

same key and data pair on both modules, which consists of

randomly generated 1000 keys and 1000 blocks of data,

resulting in a total of 1,000,000 encryptions.

In addition, because the added Rust support is minimal

and does not have support for device creation, I use the

initial safe abstractions of the “Rust for Linux” project,

which may be found in [9].

A. Module Size

When a C or Rust code is compiled, the compiler

generates an object file that contains metadata and data

regarding the overall code. The information inside this

object file is structured in a specific format, such as the

Executable and Linkable Format (ELF) for UNIX-like

systems or Portable Executable (PE) for Windows, based

on the compiler and target platform, and is separated into

various sections [7][8]. The total size of a module is the

aggregated size of each individual section of the object file,

along with additional metadata. The sizes of both modules

are shown in Fig. 3.

Fig. 3. Size of the C and Rust modules in kilobytes (KB).

B. Section Size

In accordance with the previous section, the size of the

specific sections of both modules is shown in Fig. 4.

Fig. 4. Size of the .text, .data, and .bss sections of the

C and Rust modules in bytes. The sizes of these sections

also include the related relocation section size.

C. Number of Symbols

The total number of symbols in both modules is shown

in Fig. 5. These numbers include debug symbols; however,

they do not include absolute sections if their symbol names

represent a file.

Fig. 5. Total number of symbols in the C and Rust

modules.

D. Average Encryption Time of a Block

The average time required to encrypt a block in both

modules is shown in Fig. 6. To reduce variance, five

different benchmarks were performed.

Fig. 6. Average time required for the C and Rust modules

to encrypt a block. The results are in µs.

E. Total Encryption Time of 1000 Blocks with 1000

Different Keys

The total time required to complete 1,000,000

encryptions in both modules is shown in Fig. 7. To reduce

variance, five different benchmarks were performed.

Fig. 7. Total time it takes for the C and Rust modules to

perform 1,000,000 encryptions. The results are in seconds.

August 2024 4

F. Build Time

The total time required to build both modules is shown

in Fig. 8.

Fig. 8. Total time it takes for the C and Rust modules to be

built. The results are in seconds.

V. ANALYSIS OF THE BOTH MODULES’ PROPERTIES

A. Module Size

Based on Fig. 3, it is clear that the Rust module is

significantly larger (+139.64%). To determine what causes

the Rust module to be larger, we need to look at the sizes

of the other sections that are not shown in Fig. 4.

B. Section Size

Based on Fig. 4, we already know that the Rust module

has two sections that are larger than the C module.

However, even if these two larger sections of the Rust

module are added together, there is still a large gap in the

total module size. This means that some of the omitted

sections are significantly larger.

When kernel modules are built, they include symbols

solely for debugging purposes. If we look at Fig. 9, we

may see that the size of the debug symbols in the Rust

module is significantly larger (+142.28%) than that in the

C module and makes up the majority of the Rust module.

Fig. 9. Total size of debug symbols in the C and Rust

modules. The sizes are in bytes. The sizes of these sections

also include the related relocation section size.

Table 1 lists the percentages of the total size occupied

by each section of the module.

Module Section Size %

C .text 2.14%

C .data 0.61%

C .bss 0.059%

C .debug 92.42%

C Other ~4.77%

Rust .text 1.44%

Rust .data 0.20%

Rust .bss 0.001%

Rust .debug 97.27%

Rust Other ~1.09%

Table 1. Table of which section occupies how much space

in the module.

 According to Table 1, the majority of the size is

contributed by debug symbols in both modules. As Miguel

Ojeda mentioned in [3], the most probable reason for the

Rust module being significantly larger than the C module

is that the unused parts of Rust’s standard library are

imported into the module, along with their debug symbols.

In addition, if we look at the undefined symbols in the C

module, we may see two symbols, misc_register and

misc_deregister, which are functions defined in

“drivers/char/misc.c” and exported as symbols in the

kernel. As they are exported as symbols, this allows other

C modules to import them dynamically. However, Rust

modules require safe abstractions, and we may see that the

safe abstraction for misc_register and misc_deregister

is included in the Rust module, which is called

<kernel::miscdev::Registration<...>::new_pinned,

in contrast to the C module, where it is dynamically

included. We may understand that another reason for the

Rust module being large is the necessity to include these

abstractions in the module itself.

C. Performance

Based on Fig. 6, the Rust module is ~0.16µs slower than

the C module when encrypting a block. Based on Fig. 7,

the Rust module is ~0.17s slower than the C module when

both modules complete a total of 1,000,000 encryptions.

D. Safety

Throughout the development of the Rust code, Rust’s

compiler caught many potential problems owing to short-

lived references during compile-time checks and prompted

me to fix them. In C, because memory management is left

to the developer, it could result in access to a dangling

reference, which is an undefined behavior. In addition, the

compiler constantly warned me about other types of

potential problems, such as the use of potentially

uninitialized variables and moved values, which might

result in a double-free problem if it were C code.

Because the implementation of the algorithm relies on

heavy bit manipulation, there are cases where the bits are

shifted by more than the width of the type (e.g., 8-bit

integer). In the C standard, the result of this operation is

undefined [12]. This requires an additional code to prevent

this undefined behavior from occurring. However, in Rust,

owing to the standard language functions, this operation

may safely be handled with a variety of functions, such as

checked_shl, overflowing_shl, and wrapping_shl.

During the testing of the code, there were cases where

kernel crashed due to improper copy operations, that is,

trying to copy more bytes than the size of the target buffer.

In C, this may have resulted in a memory-overflow

problem in the worst case or crash the kernel in the best

case. However, in Rust, this copy operation is checked,

which results in crashes in every case and prevents

memory-overflow attacks. There has been another instance

of kernel crash due to access to out-of-bounds of an array,

August 2024 5

which is prevented by Rust by generating panic, thus

crashing the kernel. In C, access to out-of-bounds is an

undefined behavior [12].

Overall, development in Rust was safer because of the

compile time checks, language’s safe (checked) functions,

and use of the special type Result, as all error cases must

have been handled. It is likely that the potential problems

detected by the Rust compiler will not be the case in a

small C project like this module; however, as the project

grows, the chances for these problems to occur also

increase.

E. Build Time

Rust is often criticized for its slow build times. This is

because Rust projects often depend on modules that may

also depend on other modules. Because the project and

dependency modules are built from source, it may take a

long time to build, depending on the size of the project.

However, the kernel’s safe Rust abstractions only depend

on Rust’s standard modules core and alloc, and not any

other modules. Based on Fig. 8, the build time of the Rust

module is very close to that of the C module because the

Rust module does not depend on modules other than those

mentioned above and on safe Rust abstractions.

VI. CONCLUSIONS

Even though the Rust module is significantly bigger

when compared to the C module, this may be fixed in the

future with a similar approach taken in the C modules by

making the safe abstractions dynamically includable.

Rust safety features were advantageous, many possible

problems were detected in compile time checks even

before running the module.

The test results showed that the Rust code has a

performance very close to that of the C code.

The written Rust code did not require any restrictions for

interoperability with the C code, owing to the safe

abstractions provided by the kernel.

REFERENCES

[1] “Linux Linux Kernel : CVE Security Vulnerabilities, Versions and

Detailed Reports.” www.cvedetails.com,
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html.

Accessed 8 June 2024.
[2] Chen, Haogang, et al. “Linux Kernel Vulnerabilities.” Proceedings

of the Second Asia-Pacific Workshop on Systems - APSys ’11,

2011, https://pdos.csail.mit.edu/papers/chen-kbugs.pdf,
https://doi.org/10.1145/2103799.2103805. Accessed 8 June 2024.

[3] Ojeda, Miguel. “[PATCH 00/13] [RFC] Rust Support - Ojeda.”

Lore.kernel.org, 14 Apr. 2021,
https://lore.kernel.org/lkml/20210414184604.23473-1-

ojeda@kernel.org/. Accessed 7 June 2024.

[4] “Rust for Linux - NVMe Driver.” Rust-For-Linux.com, https://rust-
for-linux.com/nvme-driver. Accessed 8 June 2024.

[5] Hindborg, Andreas. Linux (PCI) NVMe Driver in Rust. 2022.

[6] Bogdanov, A., et al. “PRESENT: An Ultra-Lightweight Block
Cipher.” Cryptographic Hardware and Embedded Systems - CHES

2007, pp. 450–466, https://doi.org/10.1007/978-3-540-74735-2_31.

[7] “Object File.” Wikipedia, 1 May 2024,
https://en.wikipedia.org/wiki/Object_file. Accessed 12 June 2024.

[8] “Data Segment.” Wikipedia, 21 May 2023,

https://en.wikipedia.org/wiki/Data_segment. Accessed 12 June
2024.

[9] “GitHub - Rust-For-Linux/Linux at Rust.” GitHub,

https://github.com/Rust-for-Linux/linux/tree/rust. Accessed 13 June
2024.

[10] “WSL2-Linux-Kernel/Arch/Arm64/Configs/Config-Wsl-Arm64 at

edee386af1c313fc6e5f136fbb9bfea8379cc2de · Microsoft/WSL2-
Linux-Kernel.” GitHub, https://github.com/microsoft/WSL2-Linux-

Kernel/blob/edee386af1c313fc6e5f136fbb9bfea8379cc2de/arch/arm

64/configs/config-wsl-arm64. Accessed 13 June 2024.
[11] “Character Device Drivers — the Linux Kernel Documentation.”

Linux-Kernel-Labs.github.io, https://linux-kernel-

labs.github.io/refs/heads/master/labs/device_drivers.html. Accessed
18 June 2024.

[12] “ISO/IEC 9899” ISO, 1999, https://www.open-

std.org/jtc1/sc22/wg14/www/standards. Accessed 19 June 2024.
[13] “Linux_6.1 - Linux Kernel Newbies.” Kernelnewbies.org, 12 Dec.

2022, https://kernelnewbies.org/Linux_6.1. Accessed 22 June 2024.

[14] P. C. van Oorschot. “Memory Errors and Memory Safety: C as a
Case Study.” IEEE Security & Privacy, vol. 21, no. 2, 1 Mar. 2023,

pp. 70–76, https://doi.org/10.1109/msec.2023.3236542.

[15] Caballar, Rina Diane. “The Move to Memory-Safe Programming -
IEEE Spectrum.” Spectrum.ieee.org, 20 Mar. 2023,

https://spectrum.ieee.org/memory-safe-programming-languages.

Accessed 7 July 2024.
[16] Oryx Embedded. “present.c Source Code - PRESENT Encryption

Algorithm.” www.oryx-Embedded.com, https://www.oryx-

embedded.com/doc/present_8c_source.html#l00231. Accessed 7
July 2024.

https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html
https://pdos.csail.mit.edu/papers/chen-kbugs.pdf
https://doi.org/10.1145/2103799.2103805
https://lore.kernel.org/lkml/20210414184604.23473-1-ojeda@kernel.org/
https://lore.kernel.org/lkml/20210414184604.23473-1-ojeda@kernel.org/
https://rust-for-linux.com/nvme-driver
https://rust-for-linux.com/nvme-driver
https://doi.org/10.1007/978-3-540-74735-2_31
https://en.wikipedia.org/wiki/Object_file
https://en.wikipedia.org/wiki/Data_segment
https://github.com/Rust-for-Linux/linux/tree/rust
https://github.com/microsoft/WSL2-Linux-Kernel/blob/edee386af1c313fc6e5f136fbb9bfea8379cc2de/arch/arm64/configs/config-wsl-arm64
https://github.com/microsoft/WSL2-Linux-Kernel/blob/edee386af1c313fc6e5f136fbb9bfea8379cc2de/arch/arm64/configs/config-wsl-arm64
https://github.com/microsoft/WSL2-Linux-Kernel/blob/edee386af1c313fc6e5f136fbb9bfea8379cc2de/arch/arm64/configs/config-wsl-arm64
https://linux-kernel-labs.github.io/refs/heads/master/labs/device_drivers.html
https://linux-kernel-labs.github.io/refs/heads/master/labs/device_drivers.html
https://www.open-std.org/jtc1/sc22/wg14/www/standards
https://www.open-std.org/jtc1/sc22/wg14/www/standards
https://kernelnewbies.org/Linux_6.1
https://doi.org/10.1109/msec.2023.3236542
https://spectrum.ieee.org/memory-safe-programming-languages
https://www.oryx-embedded.com/doc/present_8c_source.html#l00231
https://www.oryx-embedded.com/doc/present_8c_source.html#l00231

