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Abstract—The improper use of C has resulted in
many security problems in the Linux kernel, most of
which are related to memory. Strong security is crucial
for the Linux kernel because of its wide use. Various
techniques have been proposed to improve C; however,
each technique has overhead and complexity. It is
possible to achieve better performance, safety, and
reduced complexity by using a memory-safe language.
In late 2022, Rust was added as a second language to
the Linux kernel. I assess the properties of two kernel
modules implementing the same algorithm, one written
in C and the other in Rust. In addition, I also assess
whether the Rust code requires any restrictions for
interoperability with C and whether Rust’s safety
features are advantageous or disadvantageous. The
comparison of the C and Rust modules demonstrates
that the performance of the Rust module is very close to
that of the C, along with the advantageous safety
features, and does not require any restrictions for
interoperability with the C owing to safe abstractions.

Keywords—Linux Kernel, kernel module, Rust, C,
PRESENT-80.

I. INTRODUCTION

C is one of the most popular programming languages
used to develop system-level software. There are many
reasons for its popularity, but the most prominent are that it
is simple, flexible, portable, and very fast. However, owing
to its simplicity and flexibility, it is also prone to developer
mistakes [14], which may be fatal for system-level
software and result in security vulnerabilities.

Throughout history, the Linux kernel has suffered from
security problems owing to the improper use of C, most of
which are memory related [1][2], such as use-after-free and
memory overflow. Strong security is even more crucial for
the Linux kernel, because it is commonly used in many
applications. There have been various proposals to add new
system-level programming languages to the kernel in the
past to improve the overall security; however, none of
them have been successful for various reasons, including
performance inefficiency and language complexity.

In early 2021, a proposal with an emphasis on improved
overall security along with other modern language features
that Rust provides was made by Miguel Ojeda [3] under

the “Rust for Linux” project name to add the Rust
programming language as a second language to the kernel.
This proposal also included bindings, safe abstractions, and
example modules written in Rust. Subsequently, a real
NVMe driver was written in Rust to compare its
performance against C and evaluate the Rust language

[41(5].

In late 2022, official support for the Rust programming
language was added to the Linux kernel [13]. The added
Rust support is minimal, as not all of the safe abstractions
in the initial proposal are made into the kernel. However, it
is still possible to create custom bindings and safe
abstractions.

This study aims to assess the following using two
custom loadable kernel modules implementing the same
algorithm, one written in C and the other in Rust:

1. Rust safety features and whether they are
advantageous or disadvantageous when writing a
kernel module.

2. Properties of the same module written in Rust and
C in terms of performance and footprint.

3. The interoperability of Rust and C code to
determine whether Rust’s language features may
be freely used without requiring any restrictions.

II. EXISTING TECHNIQUES TO IMPROVE C

It is possible to improve C, instead of adding a new
language to the kernel. In fact, the following techniques
have been proposed in the past, and some have found their
way into the kernel:

o Address Space Layout Randomization (ASLR)
Control Flow Integrity (CFI)
Static Analysis Tools
eBPF
Code Isolation

However, each technique has an associated overhead
that may reduce the overall efficiency of the kernel. In
addition, most of these techniques utilize runtime checks to
prevent security problems, resulting in increased
complexity. With the use of a memory-safe language, such
as Rust, it is possible to mitigate these problems [15], even
before runtime, owing to their strict type system and lack
of undefined behaviors, thereby reducing the overall
performance  overhead and complexity  without
compromising performance.
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III. DESIGN OF THE KERNEL MODULE

As technology improves rapidly, each device becomes
more computationally capable. This advancement has led
to the emergence of new applications of these devices. One
of the most popular applications is the Internet of Things
(IoT), in which devices create a large, interconnected
network to communicate and exchange data. Security is
arguably more crucial in these systems because one
compromised device may affect the entire network.
Therefore, 1 decided to implement the PRESENT-80
encryption algorithm. This algorithm is not implemented in
the kernel and is heavily dependent on bit manipulation,
which allows the use of Rust specific safe features to
perform these operations, whereas it has undefined results
in standard C. It should be noted that to evaluate Rust in
the Linux kernel, it is necessary to write a custom
algorithm that is independent of kernel features itself.
Otherwise, we will only call the safe Rust abstractions that
are basically wrappers around the C functions.

PRESENT-80 is a simple and lightweight block cipher
designed for use in resource-constrained devices [6], such
as IoT devices. It uses an 80-bit key and operates on a 64-
bit block, also known as state. The encryption process
consists of four steps, with each step but the first step
repeated in each round:

1. Round Key Generation:
This step is executed only once, prior to the
beginning of the encryption. The given 80-bit
key is expanded to thirty-two 64-bit keys to be
used in each encryption round.

2. Round Key Addition:
The state is updated with the XOR operation
using the 64-bit round key.

3. Substitution Layer:
Each 4-bit in the state is updated with a different
4-bit specified in the PRESENT-80 substitution
box.

4. Permutation Layer:
Each bit in the state moved into a different bit
position  specified in the PRESENT-80
permutation box.

The main approach in both loadable kernel modules is to
keep the algorithm implementations largely the same, with
the only differences being the use of language-provided
features to perform the same operations.

To receive and send data from and to the user space, 1
decided to create two misc. character devices, named
present80_key and present80_encrypt, respectively. In
Linux, character devices are special files in which file
operation calls such as read and write are redirected to the
file owner [11], which is the kernel module in this case.
The creation of misc. character devices relies on kernel
features; therefore, I need to use safe Rust abstractions to
call the related C functions. The user may now set the
encryption key by writing ten bytes to the present80_key
device, initiate the encryption of the block by writing eight
bytes to the present80_encrypt device, and then obtain
the encryption result by reading the same device.
Whenever these write or read operations are performed by

the user, the actions are handled by callback functions
defined in the code.

Although it is possible to use integer types (uint32_t,
uint64_t, etc.) in both languages for encryption
calculations to simplify the overall code (and possibly
increase the overall speed), I decided to use byte arrays and
perform bitwise operations on each byte itself instead of
integer types, with the expectation of using more language
features of Rust. For example, bits of the 80-bit key stored
in two separate integer types may be rotated in the
following way using C:

uintb4_t t;

uint64_t ki;
uint64_t kh;

//The key register is rotated by 61 bit
positions to the left
= kh & OXFFFF
kh (kT >> 3) & OXFFFF;
k1 (kT << 61) | (t << 45) | (k1 >> 19);

Fig. 1. PRESENT-80 round key generation step, key
rotation using integer type [16].

However, in the byte array approach, the bytes that make
the integer are rotated one at a time as follows using

Rust:

fn bytes_rotate_right(bytes: &mut [u8],
bit_count: usize) {
Tet size = bytes.len();

let fpb = bytes[0];
Tet mut pb;
Tet mut npb = 0;

for ib in 0..size {
let inb = if ib == size - 1 { 0 } else
{ ib + 1 };

if ib == 0 {
pb = bytes[ib];
npb = bytes[1nb]
} else if ib == size - 1 {

pb = npb;

npb = fpb;
} else {

pb =

npb;
npb = bytes [inb];

bytes[inb] = ((pb &
preserve_mask) .checked_sh1((8 - shift_count) as
u32)).unwrap_or(0)
| (npb.checked_shr(shift_count as
u32)junwrap_or(0));

}
Fig. 2. PRESENT-80 round key generation step, key
rotation using bytes of an integer.

IV. COMPARISON OF THE C AND RUST KERNEL MODULES

All results below were obtained using the following
hardware and operating system:

e CPU:
Intel® Alder Lake Core™ i7-12700H 14C/20T,
24MB L3, E-CORE Max 3.50GHZ P-CORE Max
4.7GHZ, 45W, 10nm SuperFin

e RAM:
8GB DDR4 3200MHz
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e OS:
Linux 6.3.0-microsoft-standard-WSL2+ #4 SMP
Sat May 25 17:35:42 BST 2024 x86 64
GNU/Linux (custom-built Rust-enabled kernel
using the WSL2 default configuration, which may
be found in [10])

The encryption tests below were performed using the
same key and data pair on both modules, which consists of
randomly generated 1000 keys and 1000 blocks of data,
resulting in a total of 1,000,000 encryptions.

In addition, because the added Rust support is minimal
and does not have support for device creation, I use the
initial safe abstractions of the ‘“Rust for Linux” project,
which may be found in [9].

A. Module Size

When a C or Rust code is compiled, the compiler
generates an object file that contains metadata and data
regarding the overall code. The information inside this
object file is structured in a specific format, such as the
Executable and Linkable Format (ELF) for UNIX-like
systems or Portable Executable (PE) for Windows, based
on the compiler and target platform, and is separated into
various sections [7][8]. The total size of a module is the
aggregated size of each individual section of the object file,
along with additional metadata. The sizes of both modules
are shown in Fig. 3.

B C W Rust
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Fig. 3. Size of the C and Rust modules in kilobytes (KB).

B. Section Size

In accordance with the previous section, the size of the
specific sections of both modules is shown in Fig. 4.
BC W Rust
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Fig. 4. Size of the .text, .data, and .bss sections of the
C and Rust modules in bytes. The sizes of these sections
also include the related relocation section size.

C. Number of Symbols

The total number of symbols in both modules is shown
in Fig. 5. These numbers include debug symbols; however,
they do not include absolute sections if their symbol names
represent a file.
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Fig. 5. Total number of symbols in the C and Rust
modules.

D. Average Encryption Time of a Block

The average time required to encrypt a block in both
modules is shown in Fig. 6. To reduce variance, five
different benchmarks were performed.
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Fig. 6. Average time required for the C and Rust modules
to encrypt a block. The results are in ps.

E. Total Encryption Time of 1000 Blocks with 1000
Different Keys

The total time required to complete 1,000,000
encryptions in both modules is shown in Fig. 7. To reduce

variance, five different benchmarks were performed.
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Fig. 7. Total time it takes for the C and Rust modules to
perform 1,000,000 encryptions. The results are in seconds.
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F. Build Time

The total time required to build both modules is shown
in Fig. 8.
Bc Rust

Build Time

Fig. 8. Total time it takes for the C and Rust modules to be
built. The results are in seconds.

V. ANALYSIS OF THE BOTH MODULES’ PROPERTIES

A. Module Size

Based on Fig. 3, it is clear that the Rust module is
significantly larger (+139.64%). To determine what causes
the Rust module to be larger, we need to look at the sizes
of the other sections that are not shown in Fig. 4.

B. Section Size

Based on Fig. 4, we already know that the Rust module
has two sections that are larger than the C module.
However, even if these two larger sections of the Rust
module are added together, there is still a large gap in the
total module size. This means that some of the omitted
sections are significantly larger.

When kernel modules are built, they include symbols
solely for debugging purposes. If we look at Fig. 9, we
may see that the size of the debug symbols in the Rust
module is significantly larger (+142.28%) than that in the
C module and makes up the majority of the Rust module.
Hc Rust

1,205,031

203,207

Size

Fig. 9. Total size of debug symbols in the C and Rust
modules. The sizes are in bytes. The sizes of these sections
also include the related relocation section size.

Table 1 lists the percentages of the total size occupied
by each section of the module.

Module Section Size %
C .text 2.14%
C .data 0.61%
C .bss 0.059%
C .debug 92.42%
C Other ~4.77%

Rust text 1.44%
Rust .data 0.20%
Rust .bss 0.001%
Rust .debug 97.27%
Rust Other ~1.09%

Table 1. Table of which section occupies how much space
in the module.

According to Table 1, the majority of the size is
contributed by debug symbols in both modules. As Miguel
Ojeda mentioned in [3], the most probable reason for the
Rust module being significantly larger than the C module
is that the unused parts of Rust’s standard library are
imported into the module, along with their debug symbols.

In addition, if we look at the undefined symbols in the C
module, we may see two symbols, misc_register and
misc_deregister, which are functions defined in
“drivers/char/misc.c” and exported as symbols in the
kernel. As they are exported as symbols, this allows other
C modules to import them dynamically. However, Rust
modules require safe abstractions, and we may see that the
safe abstraction for misc_register and misc_deregister
is included in the Rust module, which is called
<kernel::miscdev::Registration<...>::new_pinned,
in contrast to the C module, where it is dynamically
included. We may understand that another reason for the
Rust module being large is the necessity to include these
abstractions in the module itself.

C. Performance

Based on Fig. 6, the Rust module is ~0.16ps slower than
the C module when encrypting a block. Based on Fig. 7,
the Rust module is ~0.17s slower than the C module when
both modules complete a total of 1,000,000 encryptions.

D. Safety

Throughout the development of the Rust code, Rust’s
compiler caught many potential problems owing to short-
lived references during compile-time checks and prompted
me to fix them. In C, because memory management is left
to the developer, it could result in access to a dangling
reference, which is an undefined behavior. In addition, the
compiler constantly warned me about other types of
potential problems, such as the use of potentially
uninitialized variables and moved values, which might
result in a double-free problem if it were C code.

Because the implementation of the algorithm relies on
heavy bit manipulation, there are cases where the bits are
shifted by more than the width of the type (e.g., 8-bit
integer). In the C standard, the result of this operation is
undefined [12]. This requires an additional code to prevent
this undefined behavior from occurring. However, in Rust,
owing to the standard language functions, this operation
may safely be handled with a variety of functions, such as
checked_shl, overflowing_shl, and wrapping_shl.

During the testing of the code, there were cases where
kernel crashed due to improper copy operations, that is,
trying to copy more bytes than the size of the target buffer.
In C, this may have resulted in a memory-overflow
problem in the worst case or crash the kernel in the best
case. However, in Rust, this copy operation is checked,
which results in crashes in every case and prevents
memory-overflow attacks. There has been another instance
of kernel crash due to access to out-of-bounds of an array,
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which is prevented by Rust by generating panic, thus
crashing the kernel. In C, access to out-of-bounds is an
undefined behavior [12].

Overall, development in Rust was safer because of the
compile time checks, language’s safe (checked) functions,
and use of the special type Result, as all error cases must
have been handled. It is likely that the potential problems
detected by the Rust compiler will not be the case in a
small C project like this module; however, as the project
grows, the chances for these problems to occur also
increase.

E. Build Time

Rust is often criticized for its slow build times. This is
because Rust projects often depend on modules that may
also depend on other modules. Because the project and
dependency modules are built from source, it may take a
long time to build, depending on the size of the project.
However, the kernel’s safe Rust abstractions only depend
on Rust’s standard modules core and alloc, and not any
other modules. Based on Fig. 8, the build time of the Rust
module is very close to that of the C module because the
Rust module does not depend on modules other than those
mentioned above and on safe Rust abstractions.

VI. CONCLUSIONS

Even though the Rust module is significantly bigger
when compared to the C module, this may be fixed in the
future with a similar approach taken in the C modules by
making the safe abstractions dynamically includable.

Rust safety features were advantageous, many possible
problems were detected in compile time checks even
before running the module.

The test results showed that the Rust code has a
performance very close to that of the C code.

The written Rust code did not require any restrictions for
interoperability with the C code, owing to the safe
abstractions provided by the kernel.
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